Aphid Farm: Relating Temperature Dependent Life History Traits to Species Interactions

Zachary Moore and Benjamin Gilbert University of Toronto – Department of Ecology and Evolutionary Biology

Can the temperature dependence of individual life history traits be used to predict outcomes of competition and consumer-resource interactions?

Many studies have examined temperature dependent responses of populations and species interactions, but few have empirically linked them to the underlying individual mechanisms

Predictions: Ectothermic herbivores should have greater temperature dependence of life history traits than the plants they consume, destabilizing consumer-resource interactions and affecting competition

Population Effects

Individual Effects

Higher Growth Rates **Density Dependence** Rate of Plant Death **Maximum Population Size**

Fitness Differences

Study System

Per capita Parameters

Measured the above life history traits for both species using clip cages

Aphis nerii

Climate Control Chambers 17°C 20°C 23°C 26°C

Population Dynamics and Competition

Seeded and censused populations of each species alone and in competition until plant death

Theoretical Framework for Negative Correlation of Feeding Rates with Maximum Population Size

Feeding Rate

Time

Experimental Results

Temperature (C)

Temperature (C)

Temperature dependence of this single life history trait predicts one aspect of population dynamics, creating a more complex model will likely result in reasonable predictive power

Next Steps

- Model interactions between individual traits, population dynamics, and species interactions at the \bullet community level
- Expand community to more realistic field setting with more species and fluctuating temperatures \bullet

Acknowledgements	References Amarasekare, P. (2015). Effects of temperature on consumer-resource interactions. Journal of Animal Ecology 84: 665-679.
Thanks to all of the members of the Gilbert lab for their helpful feedback in creation of this poster.	Agrawal, A.A., Underwood, N. and Stinchcombe, J.R. (2004). Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology 29: 521-526. Gilbert, B., Tunney, T.D., McCann, K.S. DeLong, J.P., Vasseur, D.A., Savage, V. et al. (2014). A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters 17: 902-914
	Grainger, T., Rego, A. and Gilbert, B. (2016). Temperature-dependent species interactions shape priority effects and the coexistence of unequal competitors. Ecological Letters, in press. Mooney, K.A., Jones, P. and Agrawal, A.A. (2008). Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos, 117: 450-458.